Module scuttlebutt::field
source · [−]Expand description
This module defines finite fields.
Modules
Various number theoretic utility functions used in the library.
This module defines polynomials (and their operations) over finite fields.
Structs
A field element in the prime-order finite field $\textsf{GF}(2).$
The finite field over the prime $
M = 2^{19} 3^{26} + 1
$.
Hence, $\phi(M)
$ is divisible by $2^{19}
$ and $3^{26}
$
and thus supports a large number of FFT<2> and FFT<3> sizes for
threshold secret sharing.An element of the finite field $
\textsf{GF}(2^{40})
$ reduced over $x^{40} + x^5 + x^4 + x^3 + 1
$An element of the finite field $
\textsf{GF}(2^{45})
$ reduced over $x^{45} + x^{28} + x^{17} + x^{11} + 1
$An element of the finite field $
\textsf{GF}(2^{56})
$ reduced over $x^{56} + x^8 + x^3 + x^2 + 1
$A finite field over the Mersenne Prime 2^61 - 1
An element of the finite field $
\textsf{GF}(2^{63})
$ reduced over $x^{63} + x + 1
$An element of the finite field $
\textsf{GF}({2^{64}})
$ reduced over $x^{64} + x^{19} + x^{16} + x + 1
$.An element of the finite field $\textsf{GF}(2^{128})$ reduced over $x^{128} + x^7 + x^2 + x + 1$
The finite field over the prime
$
P = 2^{128} - 159
$.The finite field over the prime
$
P = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1 = 115792089210356248762697446949407573530086143415290314195533631308867097853951
$.The finite field over the prime
$
P = 2^{384} - 2^{128} - 2^{96} + 2^{32} - 1 = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319
$.The finite field over the prime
$
Q = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643
$.The finite field over the prime $
2^{400} - 593
$.The BLS12-381 finite field.
The BN-254 finite field.
Traits
Types that implement this trait are finite fields.
Denotes that
Self
is a subfield of FE
.A
PrimeFiniteField
is a FiniteField
with a prime modulus. In this case
the field is isomorphic to integers modulo prime p
.A GF(2) extension field such that:
Type Definitions
The degree, $
r
$ of a finite field.The relative degree between two Finite Fields.