Expand description

This module defines finite fields.

Modules

Various number theoretic utility functions used in the library.
This module defines polynomials (and their operations) over finite fields.

Structs

A field element in the prime-order finite field $\textsf{GF}(2).$
The finite field over the prime $M = 2^{19} 3^{26} + 1$. Hence, $\phi(M)$ is divisible by $2^{19}$ and $3^{26}$ and thus supports a large number of FFT<2> and FFT<3> sizes for threshold secret sharing.
An element of the finite field $\textsf{GF}(2^{40})$ reduced over $x^{40} + x^5 + x^4 + x^3 + 1$
An element of the finite field $\textsf{GF}(2^{45})$ reduced over $x^{45} + x^{28} + x^{17} + x^{11} + 1$
An element of the finite field $\textsf{GF}(2^{56})$ reduced over $x^{56} + x^8 + x^3 + x^2 + 1$
A finite field over the Mersenne Prime 2^61 - 1
An element of the finite field $\textsf{GF}(2^{63})$ reduced over $x^{63} + x + 1$
An element of the finite field $\textsf{GF}({2^{64}})$ reduced over $x^{64} + x^{19} + x^{16} + x + 1$.
An element of the finite field $\textsf{GF}(2^{128})$ reduced over $x^{128} + x^7 + x^2 + x + 1$
The finite field over the prime $P = 2^{128} - 159$.
The finite field over the prime $P = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1 = 115792089210356248762697446949407573530086143415290314195533631308867097853951$.
The finite field over the prime $P = 2^{384} - 2^{128} - 2^{96} + 2^{32} - 1 = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319$.
The finite field over the prime $Q = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643$.
The finite field over the prime $2^{400} - 593$.
The BLS12-381 finite field.
The BN-254 finite field.

Traits

Types that implement this trait are finite fields.
Denotes that Self is a subfield of FE.
A PrimeFiniteField is a FiniteField with a prime modulus. In this case the field is isomorphic to integers modulo prime p.
A GF(2) extension field such that:

Type Definitions

The degree, $r$ of a finite field.
The relative degree between two Finite Fields.