1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
//! This module defines finite fields.

use crate::{
    field::polynomial::Polynomial,
    generic_array_length::AnyArrayLength,
    ring::{FiniteRing, IsSubRingOf},
};
use generic_array::{ArrayLength, GenericArray};
use std::ops::{Div, DivAssign};

/// Types that implement this trait are finite fields.
pub trait FiniteField: FiniteRing + DivAssign<Self> + Div<Self, Output = Self> {
    /// The prime-order subfield of the finite field.
    type PrimeField: PrimeFiniteField + IsSubFieldOf<Self>;
    /// Multiplication over field elements should be reduced over this polynomial.
    fn polynomial_modulus() -> Polynomial<Self::PrimeField>;

    /// The generator for the multiplicative group.
    const GENERATOR: Self;

    /// The number of bits in the bit decomposition of any element of this finite field.
    ///
    /// This number should be equal to (for the field $`\textsf{GF}(p^r)`$):
    /// ```math
    /// \lceil\log_2(p)\rceil \cdot r
    /// ```
    ///
    /// See [`Self::bit_decomposition`] for the exact meaning of bit decomposition
    type NumberOfBitsInBitDecomposition: ArrayLength<bool> + ArrayLength<F2>;
    /// Decompose the given field element into bits.
    ///
    /// This bit decomposition should be done according to [Weng et al., section 5](https://eprint.iacr.org/2020/925.pdf#section.5).
    ///
    /// Let $`p`$ be a positive prime. Let $`r`$ be a positive integer.
    /// Let $`m=\lceil\log_2 p\rceil`$, the number of bits needed to represent $`p`$.
    ///
    /// Let $`F = \textsf{GF}(p^r)`$ be the current field (the field represented by `Self`).
    ///
    /// Let $`v`$ be a vector of $`r \cdot m`$ elements of $`F`$.
    /// Let $`v = (v_0, v_1, \ldots, v_{rm}) \in F^{rm}`$.
    /// We define (don't worry about $`g`$, we're just keeping the syntax of the paper)
    /// $`\langle g,v\rangle \in F`$ using the polynomial representation of F, below:
    /// ```math
    /// \langle g, v \rangle(x) \coloneqq
    /// \sum\limits_{i=0}^{r-1} \left( x^i \cdot \sum\limits_{j=1}^{m-1}
    /// 2^j \cdot v_{i \cdot m + j}
    /// \right )
    /// ```
    ///
    /// Let $`f \in F`$.
    /// Let $`b \in \{0,1\}^{rm} \subseteq F^{rm}`$ (that is, a 0/1 vector where 0/1 are field
    /// elements of $`F`$), such that $`\langle g, b \rangle = f`$.
    ///
    /// Invoking the `bit_decomposition` function on `f` should yield the vector $`b`$ where a 0
    /// element of $`b`$ corresponds to `false` and a 1 element corresponds to `true`.
    fn bit_decomposition(&self) -> GenericArray<bool, Self::NumberOfBitsInBitDecomposition>;
    /// Compute the multiplicative inverse of self.
    ///
    /// # Panics
    /// This function will panic if `*self == Self::ZERO`
    fn inverse(&self) -> Self;

    /// Decompose `self` into an array of `T` elements where `T` is a subfield of `Self`.
    ///
    /// See [`IsSubFieldOf`] for more info.
    #[inline]
    fn decompose<T: FiniteField + IsSubFieldOf<Self>>(
        &self,
    ) -> GenericArray<T, DegreeModulo<T, Self>> {
        T::decompose_superfield(self)
    }
    /// Create a field element from an array of subfield `T` elements.
    ///
    /// See [`IsSubFieldOf`] for more info.
    #[inline]
    fn from_subfield<T: FiniteField + IsSubFieldOf<Self>>(
        arr: &GenericArray<T, DegreeModulo<T, Self>>,
    ) -> Self {
        T::form_superfield(arr)
    }
}

/// The degree, $`r`$ of a finite field.
///
/// Where `Self` is $`\textsf{GF(p^r)}`$
pub type Degree<FE> = DegreeModulo<<FE as FiniteField>::PrimeField, FE>;

/// The relative degree between two Finite Fields.
///
/// Let $`A`$ be a subfield of $`B`$. `DegreeModulo<A, B>` is `DegreeModulo` as defined by
/// [`IsSubFieldOf`].
pub type DegreeModulo<A, B> = <A as IsSubFieldOf<B>>::DegreeModulo;

/// Denotes that `Self` is a subfield of `FE`.
///
/// All finite fields can be written as $`\textsf{GF}(p^r)`$ where $`p`$ is prime.
///
/// Let the finite field $`A`$ denote `Self` and $`B`$ denote `FE`.
///
/// If $`A`$ is a subfield of $`B`$, it's true that
/// 1. When $`A`$ and $`B`$ are written in the $`\textsf{GF}(p^r)`$ form, their primes are equal.
/// 2. $`r_A \vert r_B`$
///
/// Let $`n`$ be $`\frac{r_B}{r_A}`$.
///
/// $`B`$ is isomorphic to the set of polynomials of maximum degree $`n`$ where coefficients are
/// taken from $`A`$. To put it another way, we can represent $`B`$ as vectors containing $`n`$
/// $`A`$ values.
///
/// # Alternatives
/// These methods exist on the _subfield_ type, which is not a natural API. You may prefer using
/// [`FiniteField::decompose`], [`FiniteField::from_subfield`], or the type alias [`DegreeModulo`].
pub trait IsSubFieldOf<FE: FiniteField>: FiniteField + IsSubRingOf<FE> {
    /// The value $`n`$ from above.
    type DegreeModulo: ArrayLength<Self> + AnyArrayLength;
    /// Turn `FE` into an array of `Self`, a subfield of `FE`.
    fn decompose_superfield(fe: &FE) -> GenericArray<Self, Self::DegreeModulo>;
    /// Homomorphically lift an array of `Self` into an `FE`.
    fn form_superfield(components: &GenericArray<Self, Self::DegreeModulo>) -> FE;
}
impl<FE: FiniteField> IsSubFieldOf<FE> for FE {
    type DegreeModulo = generic_array::typenum::U1;
    #[inline]
    fn decompose_superfield(fe: &FE) -> GenericArray<Self, Self::DegreeModulo> {
        GenericArray::from([*fe])
    }
    #[inline]
    fn form_superfield(components: &GenericArray<Self, Self::DegreeModulo>) -> FE {
        components[0]
    }
}

/// A `PrimeFiniteField` is a `FiniteField` with a prime modulus. In this case
/// the field is isomorphic to integers modulo prime `p`.
pub trait PrimeFiniteField:
    FiniteField<PrimeField = Self>
    + IsSubFieldOf<Self, DegreeModulo = generic_array::typenum::U1>
    + std::convert::TryFrom<u128>
{
}

#[cfg(test)]
#[macro_use]
mod test_utils;

#[cfg(test)]
macro_rules! call_with_big_finite_fields {
    ($f:ident $(, $arg:expr)* $(,)?) => {{
        $f::<$crate::field::F61p>($($arg),*);
        $f::<$crate::field::F64b>($($arg),*);
        $f::<$crate::field::F128b>($($arg),*);
        $f::<$crate::field::F40b>($($arg),*);
        $f::<$crate::field::F45b>($($arg),*);
        $f::<$crate::field::F56b>($($arg),*);
        $f::<$crate::field::F63b>($($arg),*);
        #[cfg(feature = "ff")]
        $f::<$crate::field::F128p>($($arg),*);
        #[cfg(feature = "ff")]
        $f::<$crate::field::F384p>($($arg),*);
        #[cfg(feature = "ff")]
        $f::<$crate::field::F384q>($($arg),*);
    }};
}

#[cfg(test)]
macro_rules! call_with_finite_field {
    ($f:ident $(, $arg:expr)* $(,)?) => {{
        call_with_big_finite_fields!($f$(,$arg)*);
        $f::<$crate::field::F2>($($arg),*);
    }};
}

macro_rules! field_ops {
    ($f:ident $($tt:tt)*) => {
        crate::ring::ring_ops!($f $($tt)*);

        $crate::ops::binop!(Div, div, std::ops::DivAssign::div_assign, $f);
        $crate::ops::assign_op!(DivAssign, div_assign, $f);

        impl<'a> std::ops::DivAssign<&'a $f> for $f {
            fn div_assign(&mut self, rhs: &Self) {
                *self *= rhs.inverse();
            }
        }
    };
}

/// Bit decomposition of `bits` into an array.
pub(crate) fn standard_bit_decomposition<L: ArrayLength<bool>>(
    bits: u128,
) -> GenericArray<bool, L> {
    let mut out: GenericArray<bool, L> = Default::default();
    for (i, dst) in out.iter_mut().enumerate() {
        *dst = (bits & (1 << (i as u128))) != 0;
    }
    out
}

mod f2;
pub use f2::F2;

mod f128b;
pub use f128b::F128b;

mod f64b;
pub use f64b::F64b;

mod small_binary_fields;
pub use small_binary_fields::{F40b, F45b, F56b, F63b, SmallBinaryField};

mod f61p;
pub use f61p::F61p;

#[cfg(feature = "ff")]
mod prime_field_using_ff;
#[cfg(feature = "ff")]
pub use prime_field_using_ff::{F128p, F256p, F384p, F384q, F400p, Fbls12381, Fbn254};
#[cfg(feature = "ff")]
mod f2e19x3e26;
#[cfg(feature = "ff")]
pub use f2e19x3e26::F2e19x3e26;

pub mod polynomial;

pub mod fft;