[−][src]Struct fancy_garbling::circuit::CircuitBuilder
CircuitBuilder is used to build circuits.
Methods
impl CircuitBuilder
[src]
pub fn new() -> Self
[src]
Make a new CircuitBuilder
.
pub fn finish(self) -> Circuit
[src]
Finish circuit building, outputting the resulting circuit.
pub fn garbler_input(&mut self, modulus: u16) -> CircuitRef
[src]
Get CircuitRef for a garbler input wire.
pub fn evaluator_input(&mut self, modulus: u16) -> CircuitRef
[src]
Get CircuitRef for an evaluator input wire.
pub fn garbler_inputs(&mut self, mods: &[u16]) -> Vec<CircuitRef>
[src]
Get a vec of CircuitRefs for garbler inputs.
pub fn evaluator_inputs(&mut self, mods: &[u16]) -> Vec<CircuitRef>
[src]
Get a vec of CircuitRefs for garbler inputs.
pub fn crt_garbler_input(&mut self, modulus: u128) -> CrtBundle<CircuitRef>
[src]
Get a CrtBundle for the garbler using composite modulus Q
pub fn crt_evaluator_input(&mut self, modulus: u128) -> CrtBundle<CircuitRef>
[src]
Get a CrtBundle for the evaluator using composite modulus Q
pub fn bin_garbler_input(&mut self, nbits: usize) -> BinaryBundle<CircuitRef>
[src]
Get a BinaryBundle for the garbler with n bits.
pub fn bin_evaluator_input(&mut self, nbits: usize) -> BinaryBundle<CircuitRef>
[src]
Get a BinaryBundle for the evaluator with n bits.
Trait Implementations
impl Fancy for CircuitBuilder
[src]
type Item = CircuitRef
The underlying wire datatype created by an object implementing Fancy
.
type Error = CircuitBuilderError
Errors which may be thrown by the users of Fancy.
fn constant(
&mut self,
val: u16,
modulus: u16
) -> Result<CircuitRef, Self::Error>
[src]
&mut self,
val: u16,
modulus: u16
) -> Result<CircuitRef, Self::Error>
fn add(
&mut self,
xref: &CircuitRef,
yref: &CircuitRef
) -> Result<CircuitRef, Self::Error>
[src]
&mut self,
xref: &CircuitRef,
yref: &CircuitRef
) -> Result<CircuitRef, Self::Error>
fn sub(
&mut self,
xref: &CircuitRef,
yref: &CircuitRef
) -> Result<CircuitRef, Self::Error>
[src]
&mut self,
xref: &CircuitRef,
yref: &CircuitRef
) -> Result<CircuitRef, Self::Error>
fn cmul(&mut self, xref: &CircuitRef, c: u16) -> Result<CircuitRef, Self::Error>
[src]
fn proj(
&mut self,
xref: &CircuitRef,
output_modulus: u16,
tt: Option<Vec<u16>>
) -> Result<CircuitRef, Self::Error>
[src]
&mut self,
xref: &CircuitRef,
output_modulus: u16,
tt: Option<Vec<u16>>
) -> Result<CircuitRef, Self::Error>
fn mul(
&mut self,
xref: &CircuitRef,
yref: &CircuitRef
) -> Result<CircuitRef, Self::Error>
[src]
&mut self,
xref: &CircuitRef,
yref: &CircuitRef
) -> Result<CircuitRef, Self::Error>
fn output(&mut self, xref: &CircuitRef) -> Result<(), Self::Error>
[src]
fn add_many(&mut self, args: &[Self::Item]) -> Result<Self::Item, Self::Error>
[src]
Sum up a slice of wires.
fn xor(
&mut self,
x: &Self::Item,
y: &Self::Item
) -> Result<Self::Item, Self::Error>
[src]
&mut self,
x: &Self::Item,
y: &Self::Item
) -> Result<Self::Item, Self::Error>
Xor is just addition, with the requirement that x
and y
are mod 2.
fn negate(&mut self, x: &Self::Item) -> Result<Self::Item, Self::Error>
[src]
Negate by xoring x
with 1
.
fn and(
&mut self,
x: &Self::Item,
y: &Self::Item
) -> Result<Self::Item, Self::Error>
[src]
&mut self,
x: &Self::Item,
y: &Self::Item
) -> Result<Self::Item, Self::Error>
And is just multiplication, with the requirement that x
and y
are mod 2.
fn or(
&mut self,
x: &Self::Item,
y: &Self::Item
) -> Result<Self::Item, Self::Error>
[src]
&mut self,
x: &Self::Item,
y: &Self::Item
) -> Result<Self::Item, Self::Error>
Or uses Demorgan's Rule implemented with multiplication and negation.
fn and_many(&mut self, args: &[Self::Item]) -> Result<Self::Item, Self::Error>
[src]
Returns 1 if all wires equal 1.
fn or_many(&mut self, args: &[Self::Item]) -> Result<Self::Item, Self::Error>
[src]
Returns 1 if any wire equals 1.
fn mod_change(
&mut self,
x: &Self::Item,
to_modulus: u16
) -> Result<Self::Item, Self::Error>
[src]
&mut self,
x: &Self::Item,
to_modulus: u16
) -> Result<Self::Item, Self::Error>
Change the modulus of x
to to_modulus
using a projection gate.
fn adder(
&mut self,
x: &Self::Item,
y: &Self::Item,
carry_in: Option<&Self::Item>
) -> Result<(Self::Item, Self::Item), Self::Error>
[src]
&mut self,
x: &Self::Item,
y: &Self::Item,
carry_in: Option<&Self::Item>
) -> Result<(Self::Item, Self::Item), Self::Error>
Binary adder. Returns the result and the carry.
fn mux(
&mut self,
b: &Self::Item,
x: &Self::Item,
y: &Self::Item
) -> Result<Self::Item, Self::Error>
[src]
&mut self,
b: &Self::Item,
x: &Self::Item,
y: &Self::Item
) -> Result<Self::Item, Self::Error>
If b = 0
returns x
else y
. Read more
fn mux_constant_bits(
&mut self,
x: &Self::Item,
b1: bool,
b2: bool
) -> Result<Self::Item, Self::Error>
[src]
&mut self,
x: &Self::Item,
b1: bool,
b2: bool
) -> Result<Self::Item, Self::Error>
If x = 0
returns the constant b1
else return b2
. Folds constants if possible.
fn outputs(&mut self, xs: &[Self::Item]) -> Result<(), Self::Error>
[src]
Output a slice of wires.
Auto Trait Implementations
impl Send for CircuitBuilder
impl Sync for CircuitBuilder
Blanket Implementations
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> From<T> for T
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T, U> IntoBits<U> for T where
U: FromBits<T>,
U: FromBits<T>,
fn into_bits(self) -> U
impl<T> FromCast<T> for T
fn from_cast(t: T) -> T
impl<T, U> Cast<U> for T where
U: FromCast<T>,
U: FromCast<T>,
fn cast(self) -> U
impl<T> FromBits<T> for T
fn from_bits(t: T) -> T
impl<T> Same<T> for T
type Output = T
Should always be Self