1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
//! Perform manually unrolled operations on arrays.
//!
//! Look at [ArrayUnrolledExt] for the meat of this module.

/// A type which can be used to require that unrolled operations exist for a given array size.
///
/// # Example
/// ```
/// use vectoreyes::array_utils::*;
/// pub fn make_fun_array<const N: usize>() -> [usize; N]
///     where ArrayUnrolledOps: UnrollableArraySize<N>
/// {
///     <[usize; N]>::array_generate(|i| i + 10)
/// }
/// assert_eq!(make_fun_array::<4>(), [10, 11, 12, 13]);
/// ```
pub enum ArrayUnrolledOps {}

/// A marker trait you probably won't need to use directly. See the module documentation for
/// more info.
pub trait UnrollableArraySize<const N: usize> {
    fn array_generate<T, F: FnMut(usize) -> T>(f: F) -> [T; N];
    fn array_map<T, U, F: FnMut(T) -> U>(arr: [T; N], f: F) -> [U; N];
    fn array_map_result<T, U, E, F: FnMut(T) -> Result<U, E>>(
        arr: [T; N],
        f: F,
    ) -> Result<[U; N], E>;
    fn array_fold<T, U, F: FnMut(U, T) -> U>(arr: [T; N], init: U, f: F) -> U;
    fn array_zip<T1, T2>(arr1: [T1; N], arr2: [T2; N]) -> [(T1, T2); N];
    fn array_enumerate<T>(arr: [T; N]) -> [(usize, T); N];
}

/// Manually unrolled operations on arrays.
///
/// To ensure that operations are unrolled, consider annotating your closures with
/// `#[inline(always)]`. See the examples below for more details.
pub trait ArrayUnrolledExt<T, const N: usize>: Sized {
    /// Perform some computation over the elements of an array.
    #[inline(always)]
    fn array_for_each<F: FnMut(T)>(self, f: F) {
        let _ = self.array_map(f);
    }
    /// Generate an array by filling the entries.
    /// # Example
    /// ```
    /// use vectoreyes::array_utils::*;
    /// let arr = <[usize; 2]>::array_generate(#[inline(always)] |i| i + 1);
    /// assert_eq!(arr, [1, 2]);
    /// ```
    fn array_generate<F: FnMut(usize) -> T>(f: F) -> [T; N];
    /// Map over elements of an array.
    /// # Example
    /// ```
    /// use vectoreyes::array_utils::*;
    /// let arr = [0, 1];
    /// assert_eq!(arr.array_map(#[inline(always)] |x| x + 1), [1, 2]);
    /// ```
    fn array_map<U, F: FnMut(T) -> U>(self, f: F) -> [U; N];
    /// Map over elements of an array, halting on the first error.
    /// # Example
    /// ```
    /// use vectoreyes::array_utils::*;
    /// let arr = [0, 1];
    /// assert_eq!(arr.array_map_result::<u32, u32, _>(#[inline(always)] |x| Err(x)), Err(0));
    /// assert_eq!(arr.array_map_result::<u32, u32, _>(#[inline(always)] |x| Ok(x)), Ok([0, 1]));
    /// ```
    fn array_map_result<U, E, F: FnMut(T) -> Result<U, E>>(self, f: F) -> Result<[U; N], E>;
    /// Fold over an array.
    /// # Example
    /// ```
    /// use vectoreyes::array_utils::*;
    /// let out = [1, 2, 3].array_fold(0, #[inline(always)] |acu, x| acu + x);
    /// assert_eq!(out, 6);
    /// ```
    fn array_fold<U, F: FnMut(U, T) -> U>(self, init: U, f: F) -> U;
    /// Zip two arrays together.
    /// # Example
    /// ```
    /// use vectoreyes::array_utils::*;
    /// assert_eq!(
    ///     ['a', 'b', 'c'].array_zip(['x', 'y', 'z']),
    ///     [('a', 'x'), ('b', 'y'), ('c', 'z')]
    /// );
    /// ```
    fn array_zip<T2>(self, arr2: [T2; N]) -> [(T, T2); N];
    /// Produce an array where each element is a tuple containing each element's index.
    /// # Example
    /// ```
    /// use vectoreyes::array_utils::*;
    /// assert_eq!(
    ///     ['a', 'b', 'c'].array_enumerate(),
    ///     [(0, 'a'), (1, 'b'), (2, 'c')],
    /// );
    /// ```
    fn array_enumerate(self) -> [(usize, T); N];
}
impl<T, const N: usize> ArrayUnrolledExt<T, N> for [T; N]
where
    ArrayUnrolledOps: UnrollableArraySize<N>,
{
    #[inline(always)]
    fn array_generate<F: FnMut(usize) -> T>(f: F) -> [T; N] {
        ArrayUnrolledOps::array_generate(f)
    }
    #[inline(always)]
    fn array_map<U, F: FnMut(T) -> U>(self, f: F) -> [U; N] {
        ArrayUnrolledOps::array_map(self, f)
    }
    #[inline(always)]
    fn array_map_result<U, E, F: FnMut(T) -> Result<U, E>>(self, f: F) -> Result<[U; N], E> {
        ArrayUnrolledOps::array_map_result(self, f)
    }
    #[inline(always)]
    fn array_fold<U, F: FnMut(U, T) -> U>(self, init: U, f: F) -> U {
        ArrayUnrolledOps::array_fold(self, init, f)
    }
    #[inline(always)]
    fn array_zip<T2>(self, arr2: [T2; N]) -> [(T, T2); N] {
        ArrayUnrolledOps::array_zip(self, arr2)
    }
    #[inline(always)]
    fn array_enumerate(self) -> [(usize, T); N] {
        ArrayUnrolledOps::array_enumerate(self)
    }
}

pub trait ArrayAdjacentPairs {
    type T;
    /// An array which is `[Self::T; ceil(Self::LEN / 2)]`
    type AdjacentPairs;

    /// Turn an array into an array of pairs where each element is paired with an adjacent element.
    /// If the array has odd length, use the fallback.
    /// # Example
    /// ```
    /// use vectoreyes::array_utils::*;
    /// assert_eq!(
    ///     [0, 1, 2, 3].pair_adjacent_maybe_odd(42),
    ///     [(0, 1), (2, 3)]
    /// );
    /// assert_eq!(
    ///     [0, 1, 2, 3, 4].pair_adjacent_maybe_odd(42),
    ///     [(0, 1), (2, 3), (4, 42)]
    /// );
    /// ```
    fn pair_adjacent_maybe_odd(self, fallback: Self::T) -> Self::AdjacentPairs;
}

/// An even-sized array.
pub trait EvenArrayAdjacentPairs: ArrayAdjacentPairs {
    /// Turn an array into an array of pairs where each element is paired with an adjacent element.
    /// # Example
    /// ```
    /// use vectoreyes::array_utils::*;
    /// assert_eq!(
    ///     [0, 1, 2, 3].pair_adjacent(),
    ///     [(0, 1), (2, 3)]
    /// );
    /// ```
    fn pair_adjacent(self) -> Self::AdjacentPairs;
}