1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
use crate::field::{Degree, FiniteField, Polynomial, F2};
use crate::ring::FiniteRing;
use crate::serialization::{BiggerThanModulus, CanonicalSerialize};
use bytemuck::{TransparentWrapper, Zeroable};
use generic_array::{typenum::Unsigned, GenericArray};
use rand::RngCore;
use smallvec::smallvec;
use std::iter::FromIterator;
use std::ops::{AddAssign, MulAssign, SubAssign};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq};
use vectoreyes::{
    array_utils::{ArrayUnrolledExt, ArrayUnrolledOps, UnrollableArraySize},
    SimdBase, U64x2,
};

/// A GF(2) extension field such that:
/// 1. `Self` is `repr(transparent)` to a `u64`
/// 2. `Self` consists of 63 or fewer bits that are stored in the lower bits of the `u64`.
/// 3. The upper bits of the `u64` are zero.
/// # Safety
/// All the requirements above _must_ be met when this trait is `unsafe impl`'d.
///
/// Note that types which implement `SmallBinaryField`, do not need to (and probably should not)
/// implement [`bytemuck::Pod`]. This type _wraps_ a POD `u64`, but this type has additional
/// requirements on its set of values, compared to a `u64`.
pub unsafe trait SmallBinaryField:
    FiniteField<PrimeField = F2> + TransparentWrapper<u64> + Zeroable
{
    /// Produce a field element of `Self` by zeroing the upper bits of `x`.
    fn from_lower_bits(x: u64) -> Self;
    /// Reduce the result of a single 128-bit carryless multiply of two `Self` values modulo
    /// [`FiniteField::reduce_multiplication_over()`]
    fn reduce(x: U64x2) -> Self;
    /// Reduce the result of several 128-bit carryless multiply operations over
    /// [`FiniteField::reduce_multiplication_over()`].
    #[inline(always)]
    fn reduce_vectored<const N: usize>(uppers: [U64x2; N], lowers: [U64x2; N]) -> [U64x2; N]
    where
        ArrayUnrolledOps: UnrollableArraySize<N>,
    {
        uppers.array_zip(lowers).array_map(
            #[inline(always)]
            |(uppers, lowers)| {
                let a = lowers.unpack_lo(uppers);
                let b = lowers.unpack_hi(uppers);
                U64x2::from([Self::peel(Self::reduce(a)), Self::peel(Self::reduce(b))])
            },
        )
    }
}

macro_rules! small_binary_field {
    (
        $(#[$m:meta])*
        $name:ident, $mod_name:ident,
        num_bits = $num_bits:ty,
        polynomial_modulus = $modulus_fn:ident,
        reduce = $reduce_fn:ident,
        $(reduce_vectored = $reduce_vectored_fn:ident)?
    ) => {
        $(#[$m])*
        #[derive(Debug, Clone, Copy, Hash, Eq, bytemuck::Zeroable, TransparentWrapper)]
        #[repr(transparent)]
        pub struct $name(u64);
        field_ops!($name);
        impl ConstantTimeEq for $name {
            #[inline]
            fn ct_eq(&self, other: &Self) -> Choice {
                self.0.ct_eq(&other.0)
            }
        }
        impl ConditionallySelectable for $name {
            #[inline]
            fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
                Self(u64::conditional_select(&a.0, &b.0, choice))
            }
        }

        impl<'a> AddAssign<&'a $name> for $name {
            #[inline]
            fn add_assign(&mut self, rhs: &'a $name) {
                self.0 ^= rhs.0;
            }
        }
        impl<'a> SubAssign<&'a $name> for $name {
            #[inline]
            fn sub_assign(&mut self, rhs: &'a $name) {
                // The additive inverse of GF(2^128) is the identity
                *self += rhs;
            }
        }

        impl<'a> MulAssign<&'a $name> for $name {
            #[inline]
            fn mul_assign(&mut self, rhs: &'a $name) {
                let product = U64x2::set_lo(self.0).carryless_mul::<false, false>(U64x2::set_lo(rhs.0));
                // Now we reduce the wide product.
                *self = Self::reduce(product);
            }
        }

        impl CanonicalSerialize for $name {
            type Serializer = crate::serialization::ByteElementSerializer<Self>;
            type Deserializer = crate::serialization::ByteElementDeserializer<Self>;
            // ceil($num_bits / 8) = ($num_bits + 8 - 1) / 8 = ($num_bits + 7) / 8
            type ByteReprLen = <
                <generic_array::typenum::U7 as std::ops::Add<$num_bits>>::Output as
                std::ops::Div<generic_array::typenum::U8>
            >::Output;
            type FromBytesError = BiggerThanModulus;

            #[inline]
            fn from_bytes(
                bytes: &GenericArray<u8, Self::ByteReprLen>,
            ) -> Result<Self, Self::FromBytesError> {
                let mut buf = [0; 8];
                buf[0..Self::ByteReprLen::USIZE].copy_from_slice(&bytes);
                let raw = u64::from_le_bytes(buf);
                if (raw >> <$num_bits as Unsigned>::U64) == 0 {
                    Ok($name(raw))
                } else {
                    Err(BiggerThanModulus)
                }
            }

            #[inline]
            fn to_bytes(&self) -> GenericArray<u8, Self::ByteReprLen> {
                #[cfg(debug_assertions)]
                {
                    for x in self.0.to_le_bytes()[Self::ByteReprLen::USIZE..].iter().copied() {
                        debug_assert_eq!(x, 0);
                    }
                }
                GenericArray::from_slice(&self.0.to_le_bytes()[0..Self::ByteReprLen::USIZE]).clone()
            }

        }

        impl FiniteRing for $name {
            #[inline]
            fn from_uniform_bytes(x: &[u8; 16]) -> Self {
                Self::from_lower_bits(u128::from_le_bytes(*x) as u64)
            }
            #[inline]
            fn random<R: RngCore + ?Sized>(rng: &mut R) -> Self {
                Self::from_lower_bits(rng.next_u64())
            }
            const ZERO: Self = $name(0);
            const ONE: Self = $name(1);
        }

        impl FiniteField for $name {

            type PrimeField = F2;

            // This corresponds to the polynomial P(x) = x
            const GENERATOR: Self = $name(0b10);

            fn polynomial_modulus() -> Polynomial<Self::PrimeField> {
                $modulus_fn()
            }

            type NumberOfBitsInBitDecomposition = $num_bits;

            fn bit_decomposition(&self) -> GenericArray<bool, Self::NumberOfBitsInBitDecomposition> {
                super::standard_bit_decomposition(u128::from(self.0))
            }

            fn inverse(&self) -> Self {
                if *self == Self::ZERO {
                    panic!("Zero cannot be inverted");
                }
                self.pow_var_time((1 << <$num_bits as Unsigned>::U64) - 2)
            }
        }
        impl crate::ring::IsSubRingOf<$name> for F2 {}
        impl crate::field::IsSubFieldOf<$name> for F2 {
            type DegreeModulo = $num_bits;
            fn decompose_superfield(fe: &$name) -> generic_array::GenericArray<Self, $num_bits> {
                let x = fe.0;
                GenericArray::from_iter(
                    (0..<$num_bits as Unsigned>::U64).map(
                        |shift| F2::try_from(((x >> shift) & 1) as u8).unwrap()
                    ),
                )
            }
            fn form_superfield(components: &GenericArray<Self, Self::DegreeModulo>) -> $name {
                let mut out = 0;
                for x in components.iter().rev() {
                    out <<= 1;
                    out |= u64::from(u8::from(*x));
                }
                $name(out)
            }
        }
        impl From<F2> for $name {
            fn from(pf: F2) -> Self {
                Self(pf.0.into())
            }
        }
        impl std::ops::Mul<$name> for F2 {
            type Output = $name;
            #[inline]
            fn mul(self, x: $name) -> $name {
                // Equivalent to:
                // Self::conditional_select(&Self::ZERO, &self, pf.ct_eq(&F2::ONE))
                let new = (!((self.0 as u64).wrapping_sub(1))) & x.0;
                debug_assert!(new == 0 || new == x.0);
                $name(new)
            }
        }

        impl $name {
            const NUM_BITS_OF_WIDEST_PRODUCT: u64 = <$num_bits as Unsigned>::U64 * 2 - 1;
        }

        unsafe impl SmallBinaryField for $name {
            #[inline]
            fn from_lower_bits(x: u64) -> Self {
                let out = x & (1 << Degree::<Self>::U64) - 1;
                debug_assert_eq!((out >> Degree::<Self>::U64), 0);
                Self::wrap(out)
            }

            #[inline(always)] // due to SIMD
            fn reduce(product: U64x2) -> Self {
                debug_assert!($name::NUM_BITS_OF_WIDEST_PRODUCT >= 64);
                debug_assert_eq!(product.extract::<1>() >> ($name::NUM_BITS_OF_WIDEST_PRODUCT - 64), 0);
                $reduce_fn(product)
            }

            $(#[inline(always)] // due to SIMD
            fn reduce_vectored<const N: usize>(uppers: [U64x2; N], lowers: [U64x2; N]) -> [U64x2; N]
            where
                ArrayUnrolledOps: UnrollableArraySize<N>,
            {
                debug_assert!($name::NUM_BITS_OF_WIDEST_PRODUCT >= 64);
                #[cfg(debug_assertions)]
                {
                    for upper in uppers.iter()
                        .copied()
                        .flat_map(|x| IntoIterator::into_iter(x.as_array()))
                    {
                        debug_assert_eq!(upper >> ($name::NUM_BITS_OF_WIDEST_PRODUCT - 64), 0);
                    }
                }
                $reduce_vectored_fn::<N>(uppers, lowers)
            })?
        }

        #[cfg(test)]
        mod $mod_name {
            use super::*;
            use proptest::prelude::*;
            #[test]
            fn small_enough() {
                assert!(<$num_bits as Unsigned>::U64 <= 63);
            }
            proptest! {
                #[test]
                fn test_vectorized_reduction(
                    a in 0..(1_u128 << $name::NUM_BITS_OF_WIDEST_PRODUCT),
                    b in (0..(1_u128 << $name::NUM_BITS_OF_WIDEST_PRODUCT))
                ) {
                    let a: U64x2 = bytemuck::cast(a);
                    let b: U64x2 = bytemuck::cast(b);
                    let lowers = a.unpack_lo(b);
                    let uppers = a.unpack_hi(b);
                    let [a_reduced, b_reduced] = $name::reduce_vectored([uppers], [lowers])[0].as_array();
                    prop_assert_eq!(a_reduced, $name::reduce(a).0);
                    prop_assert_eq!(b_reduced, $name::reduce(b).0);
                }
            }
            test_field!(test_field, crate::field::$name);
        }
    };
}

#[inline(always)] // due to SIMD
fn reduce_f63b(product: U64x2) -> F63b {
    let [lower, upper] = product.as_array();
    let reduced = lower ^ (lower >> 63) ^ (upper << 1) ^ ((lower >> 62) & 0b10) ^ (upper << 2);
    F63b::from_lower_bits(reduced)
}

#[inline(always)] // due to SIMD
fn reduce_vectored_f63b<const N: usize>(uppers: [U64x2; N], lowers: [U64x2; N]) -> [U64x2; N]
where
    ArrayUnrolledOps: UnrollableArraySize<N>,
{
    // Since all of our operations have 1 cycle of latency, it's cheaper (in terms of registers)
    // to not interleave any of these operations.
    uppers.array_zip(lowers).array_map(
        #[inline(always)]
        |(uppers, lowers)| {
            let shr_63 = lowers.shift_right::<63>();
            let unmasked = lowers
                ^ shr_63
                ^ uppers.shift_left::<1>()
                ^ shr_63.shift_left::<1>()
                ^ uppers.shift_left::<2>();
            unmasked.shift_left::<1>().shift_right::<1>()
        },
    )
}

fn polynomial_modulus_f63b() -> Polynomial<F2> {
    let mut coefficients = smallvec![F2::ZERO; 63];
    coefficients[63 - 1] = F2::ONE;
    coefficients[1 - 1] = F2::ONE;
    Polynomial {
        constant: F2::ONE,
        coefficients,
    }
}

small_binary_field!(
    /// An element of the finite field $`\textsf{GF}(2^{63})`$ reduced over $`x^{63} + x + 1`$
    F63b,
    f63b,
    num_bits = generic_array::typenum::U63,
    polynomial_modulus = polynomial_modulus_f63b,
    reduce = reduce_f63b,
    reduce_vectored = reduce_vectored_f63b
);

#[inline(always)] // due to SIMD
fn reduce_f56b(product: U64x2) -> F56b {
    // TODO: implement this more efficiently
    let x: u128 = bytemuck::cast(product);
    let reduced = ((x >> 0) & 0b0000000011111111111111111111111111111111111111111111111111111111
        ^ (x >> 48) & 0b0000000011111111111111111111111111111111111111111111111100000000
        ^ (x >> 53) & 0b0000011111111111111111111111111111111111111111111111111111000
        ^ (x >> 54) & 0b000011111111111111111111111111111111111111111111111111111100
        ^ (x >> 56) & 0b0011111111111111111111111111111111111111111111111111111111
        ^ (x >> 96) & 0b111111111100000000
        ^ (x >> 101) & 0b0000011111000
        ^ (x >> 102) & 0b000011111100
        ^ (x >> 104) & 0b0011111111
        ^ (x >> 106) & 0b11111000
        ^ (x >> 107) & 0b0000100
        ^ (x >> 108) & 0b111100
        ^ (x >> 109) & 0b00111
        ^ (x >> 110) & 0b0011
        ^ (x >> 112) & 0b11) as u64;
    debug_assert_eq!(reduced >> 56, 0);
    F56b(reduced)
}

fn polynomial_modulus_f56b() -> Polynomial<F2> {
    let mut coefficients = smallvec![F2::ZERO; 56];
    coefficients[56 - 1] = F2::ONE;
    coefficients[8 - 1] = F2::ONE;
    coefficients[3 - 1] = F2::ONE;
    coefficients[2 - 1] = F2::ONE;
    Polynomial {
        constant: F2::ONE,
        coefficients,
    }
}

small_binary_field!(
    /// An element of the finite field $`\textsf{GF}(2^{56})`$ reduced over $`x^{56} + x^8 + x^3 + x^2 + 1`$
    F56b,
    f56b,
    num_bits = generic_array::typenum::U56,
    polynomial_modulus = polynomial_modulus_f56b,
    reduce = reduce_f56b,
);

#[inline(always)] // due to SIMD
fn reduce_f40b(product: U64x2) -> F40b {
    let (r_lower, the_upper) = (product.extract::<0>(), product.extract::<1>());
    // This reduction algorithm is a translation of C++ code written by Daniel Kales
    let upper_mask: u64 = 0xffff;
    let lower_mask: u64 = 0xFFFFFFFFFF;

    let t = ((the_upper & upper_mask) << 24) | (r_lower >> 40);
    let r_upper = t ^ (t >> 35) ^ (t >> 36) ^ (t >> 37);
    let r_lower = r_lower ^ (r_upper << 5) ^ (r_upper << 4) ^ (r_upper << 3) ^ (r_upper << 0);
    F40b(lower_mask & r_lower)
}

fn polynomial_modulus_f40b() -> Polynomial<F2> {
    // x^40 + x^5 + x^4 + x^3 + 1
    let mut coefficients = smallvec![F2::ZERO; 40];
    coefficients[40 - 1] = F2::ONE;
    coefficients[5 - 1] = F2::ONE;
    coefficients[4 - 1] = F2::ONE;
    coefficients[3 - 1] = F2::ONE;
    Polynomial {
        constant: F2::ONE,
        coefficients,
    }
}

small_binary_field!(
    /// An element of the finite field $`\textsf{GF}(2^{40})`$ reduced over $`x^{40} + x^5 + x^4 + x^3 + 1`$
    F40b,
    f40b,
    num_bits = generic_array::typenum::U40,
    polynomial_modulus = polynomial_modulus_f40b,
    reduce = reduce_f40b,
);

#[inline(always)] // due to SIMD
fn reduce_f45b(wide_product: U64x2) -> F45b {
    let wide_product: u128 = bytemuck::cast(wide_product);
    F45b(
        ((wide_product >> 0) & 0b0000000000000000000111111111111111111111111111111111111111111111
            ^ (wide_product >> 17)
                & 0b0000000000000000000111111111111111110000000000000000000000000000
            ^ (wide_product >> 28)
                & 0b0000000000000000000111111111111111111111111111100000000000000000
            ^ (wide_product >> 34) & 0b0000000000000000000000000000001111111111111111100000000000
            ^ (wide_product >> 45) & 0b00111111111111111110000000000011111111111111111
            ^ (wide_product >> 51) & 0b11111111111111111111111111111100000000000
            ^ (wide_product >> 56) & 0b111111111111111111100000000000000000
            ^ (wide_product >> 62) & 0b110000000000000000011111111111
            ^ (wide_product >> 73) & 0b0011111111111111111
            ^ (wide_product >> 79) & 0b1100000000000
            ^ (wide_product >> 90) & 0b11) as u64,
    )
}

fn polynomial_modulus_f45b() -> Polynomial<F2> {
    //X2^45 + X2^28 + X2^17 + X2^11 + 1
    let mut coefficients = smallvec![F2::ZERO; 128];
    coefficients[45 - 1] = F2::ONE;
    coefficients[28 - 1] = F2::ONE;
    coefficients[17 - 1] = F2::ONE;
    coefficients[11 - 1] = F2::ONE;
    Polynomial {
        constant: F2::ONE,
        coefficients,
    }
}

small_binary_field!(
    /// An element of the finite field $`\textsf{GF}(2^{45})`$ reduced over $`x^{45} + x^{28} + x^{17} + x^{11} + 1`$
    F45b,
    f45b,
    num_bits = generic_array::typenum::U45,
    polynomial_modulus = polynomial_modulus_f45b,
    reduce = reduce_f45b,
);