1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
use super::{
    base_svole::{Receiver as BaseReceiver, Sender as BaseSender},
    spsvole::{SpsReceiver, SpsSender},
    utils::Powers,
};
use crate::svole::wykw::specialization::NoSpecialization;
use crate::{
    errors::Error,
    svole::{SVoleReceiver, SVoleSender},
};
use generic_array::typenum::Unsigned;
use rand::{
    distributions::{Distribution, Uniform},
    CryptoRng, Rng, SeedableRng,
};
use scuttlebutt::{
    field::{Degree, FiniteField},
    ring::FiniteRing,
    AbstractChannel, AesRng, Block, Malicious, SemiHonest,
};

// LPN parameters used in the protocol. We use three stages, two sets of LPN
// parameters for setup, and one set of LPN parameters for the extend phase.
// This differs from what is done in the WYKW paper, but based on personal
// communication with one of the authors, is what is used in the implementation.

/// Type for LPN parameters used internally in the setup phase and the extend phase of the
/// protocol. LPN parameters are provided during the initialization of the protocol so that
/// the extension produces small, medium or large number of values.
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct LpnParams {
    /// Hamming weight `t` of the error vector `e` used in the LPN assumption.
    weight: usize,
    /// Number of columns `n` in the LPN matrix.
    cols: usize,
    /// Number of rows `k` in the LPN matrix.
    rows: usize,
}

// LPN parameters for setup0 phase.
// const LPN_SETUP0_PARAMS: LpnParams = LpnParams {
//     weight: 600,
//     cols: 9_600, // cols / weight = 16
//     rows: 1_220,
// };

/// Small LPN parameters for setup phase.
pub const LPN_SETUP_SMALL: LpnParams = LpnParams {
    weight: 600,
    cols: 9_600, // cols / weight = 16
    rows: 1_220,
};
/// Small LPN parameters for extend phase.
pub const LPN_EXTEND_SMALL: LpnParams = LpnParams {
    weight: 2_600,
    cols: 166_400, // cols / weight = 64
    rows: 5_060,
};

/// Medium LPN parameters for setup phase.
pub const LPN_SETUP_MEDIUM: LpnParams = LpnParams {
    weight: 2_600,
    cols: 166_400, // cols / weight = 64
    rows: 5_060,
};
/// Medium LPN parameters for extend phase.
pub const LPN_EXTEND_MEDIUM: LpnParams = LpnParams {
    weight: 4_965,
    cols: 10_168_320, // cols / weight = 2_048
    rows: 158_000,
};

/// Large LPN parameters for setup phase.
pub const LPN_SETUP_LARGE: LpnParams = LpnParams {
    rows: 19_870,
    cols: 642_048,
    weight: 2_508,
};
/// Large LPN parameters for extend phase.
pub const LPN_EXTEND_LARGE: LpnParams = LpnParams {
    rows: 589_760,
    cols: 10_805_248,
    weight: 1_319,
};

// Constant `d` representing a `d`-local linear code, meaning that each column
// of the LPN matrix contains exactly `d` non-zero entries.
const LPN_PARAMS_D: usize = 10;

// Computes the number of saved VOLEs we need for specific LPN parameters.
fn compute_num_saved<FE: FiniteField>(params: LpnParams) -> usize {
    params.rows + params.weight + Degree::<FE>::USIZE
}

fn lpn_mtx_indices<FE: FiniteField>(
    distribution: &Uniform<u32>,
    mut rng: &mut AesRng,
) -> [(usize, FE::PrimeField); LPN_PARAMS_D] {
    let mut indices = [0u32; LPN_PARAMS_D];
    for i in 0..LPN_PARAMS_D {
        let mut rand_idx = distribution.sample(&mut rng);
        while indices[0..i].iter().any(|&x| x == rand_idx) {
            rand_idx = distribution.sample(&mut rng);
        }
        indices[i] = rand_idx;
    }
    let mut out_indices = [(0, FE::PrimeField::ONE); LPN_PARAMS_D];
    for i in 0..LPN_PARAMS_D {
        out_indices[i].0 = indices[i].try_into().unwrap();
        out_indices[i].1 = FE::PrimeField::random_nonzero(&mut rng);
    }
    out_indices
}

/// Subfield VOLE sender.
pub struct Sender<FE: FiniteField> {
    lpn_setup: LpnParams,
    lpn_extend: LpnParams,
    spsvole: SpsSender<FE>,
    base_voles: Vec<(FE::PrimeField, FE)>,
    // Shared RNG with the receiver for generating the LPN matrix.
    lpn_rng: AesRng,
}

impl<FE: FiniteField> Sender<FE> {
    fn send_internal<C: AbstractChannel, RNG: CryptoRng + Rng>(
        &mut self,
        channel: &mut C,
        params: LpnParams,
        num_saved: usize,
        rng: &mut RNG,
        output: &mut Vec<(FE::PrimeField, FE)>,
    ) -> Result<(), Error> {
        let rows = params.rows;
        let cols = params.cols;
        let weight = params.weight;
        let r = Degree::<FE>::USIZE;
        let m = cols / weight;
        // The number of base VOLEs we need to use.
        let used = rows + weight + r;

        debug_assert!(
            self.base_voles.len() >= used,
            "Not enough base sVOLEs: {} < {} + {} + {}",
            self.base_voles.len(),
            rows,
            weight,
            r
        );

        let uws = self
            .spsvole
            .send(channel, m, &self.base_voles[rows..rows + weight + r], rng)?;
        debug_assert_eq!(uws.len(), cols);

        let leftover = self.base_voles.len() - used;

        // The VOLEs we'll save for the next iteration.
        let mut base_voles = Vec::with_capacity(num_saved + leftover);
        // The VOLEs we'll return to the caller.
        output.clear();
        let out_len = cols - num_saved;
        output.reserve(out_len);
        assert!(rows <= 4_294_967_295); // 2^32 -1
        let distribution = Uniform::<u32>::from(0..rows.try_into().unwrap());
        for (i, (e, c)) in uws.into_iter().enumerate() {
            let indices = lpn_mtx_indices::<FE>(&distribution, &mut self.lpn_rng);
            // Compute `x := u A + e` and `z := w A + c`, where `A` is the LPN matrix.
            let mut x = e;
            let mut z = c;
            for (j, a) in indices.iter() {
                x += self.base_voles[*j].0 * *a;
                z += *a * self.base_voles[*j].1;
            }

            if i < num_saved {
                base_voles.push((x, z));
            } else {
                output.push((x, z));
            }
        }
        base_voles.extend(self.base_voles[used..].iter());
        self.base_voles = base_voles;
        debug_assert_eq!(self.base_voles.len(), num_saved + leftover);
        debug_assert_eq!(output.len(), cols - num_saved);
        Ok(())
    }
}

impl<FE: FiniteField> SVoleSender for Sender<FE> {
    type Msg = FE;

    fn init<C: AbstractChannel, RNG: CryptoRng + Rng>(
        channel: &mut C,
        rng: &mut RNG,
        lpn_setup: LpnParams,
        lpn_extend: LpnParams,
    ) -> Result<Self, Error> {
        let pows: Powers<FE> = Default::default();
        let mut base_sender = BaseSender::<FE, NoSpecialization>::init(channel, pows.clone(), rng)?;
        let base_voles_setup =
            base_sender.send(channel, compute_num_saved::<FE>(lpn_setup), rng)?;
        let spsvole = SpsSender::<FE>::init(channel, pows, rng)?;
        let seed = rng.gen::<Block>();
        let seed = scuttlebutt::cointoss::receive(channel, &[seed])?[0];
        let lpn_rng = AesRng::from_seed(seed);
        let mut sender = Self {
            lpn_setup,
            lpn_extend,
            spsvole,
            base_voles: base_voles_setup,
            lpn_rng,
        };

        let mut base_voles_setup = Vec::new();
        sender.send_internal(channel, sender.lpn_setup, 0, rng, &mut base_voles_setup)?;
        sender.base_voles = base_voles_setup;
        // let mut base_voles_extend = Vec::new();
        // sender.send_internal(channel, LPN_SETUP_PARAMS, 0, rng, &mut base_voles_extend)?;
        // sender.base_voles = base_voles_extend;
        Ok(sender)
    }

    fn send<C: AbstractChannel, RNG: CryptoRng + Rng>(
        &mut self,
        channel: &mut C,
        rng: &mut RNG,
        output: &mut Vec<(FE::PrimeField, FE)>,
    ) -> Result<(), Error> {
        self.send_internal(
            channel,
            self.lpn_extend,
            compute_num_saved::<FE>(self.lpn_extend),
            rng,
            output,
        )
    }

    fn duplicate<C: AbstractChannel, RNG: CryptoRng + Rng>(
        &mut self,
        channel: &mut C,
        rng: &mut RNG,
    ) -> Result<Self, Error> {
        let mut base_voles = Vec::new();
        self.send_internal(
            channel,
            self.lpn_setup,
            compute_num_saved::<FE>(self.lpn_setup),
            rng,
            &mut base_voles,
        )?;
        // let mut extras = Vec::new();
        // self.send_internal(
        //     channel,
        //     LPN_SETUP_PARAMS,
        //     compute_num_saved::<FE>(LPN_SETUP_PARAMS),
        //     rng,
        //     &mut extras,
        // )?;
        // base_voles.extend(extras.into_iter());

        debug_assert!(base_voles.len() >= compute_num_saved::<FE>(self.lpn_extend));
        debug_assert!(self.base_voles.len() >= compute_num_saved::<FE>(self.lpn_extend));

        let spsvole = self.spsvole.duplicate(channel, rng)?;
        let lpn_rng = self.lpn_rng.fork();
        Ok(Self {
            lpn_setup: self.lpn_setup,
            lpn_extend: self.lpn_extend,
            spsvole,
            base_voles,
            lpn_rng,
        })
    }
}

/// Subfield VOLE receiver.
pub struct Receiver<FE: FiniteField> {
    lpn_setup: LpnParams,
    lpn_extend: LpnParams,
    spsvole: SpsReceiver<FE>,
    delta: FE,
    base_voles: Vec<FE>,
    // Shared RNG with the sender for generating the LPN matrix.
    lpn_rng: AesRng,
}

impl<FE: FiniteField> Receiver<FE> {
    fn receive_internal<C: AbstractChannel, RNG: CryptoRng + Rng>(
        &mut self,
        channel: &mut C,
        params: LpnParams,
        num_saved: usize,
        rng: &mut RNG,
        output: &mut Vec<FE>,
    ) -> Result<(), Error> {
        let rows = params.rows;
        let cols = params.cols;
        let weight = params.weight;
        let r = Degree::<FE>::USIZE;
        let m = cols / weight;
        // The number of base VOLEs we need to use.
        let used = rows + weight + r;

        debug_assert!(
            self.base_voles.len() >= used,
            "{} < {} + {} + {}",
            self.base_voles.len(),
            rows,
            weight,
            r
        );

        let leftover = self.base_voles.len() - used;

        let vs =
            self.spsvole
                .receive(channel, m, &self.base_voles[rows..rows + weight + r], rng)?;
        debug_assert!(vs.len() == cols);
        let mut base_voles = Vec::with_capacity(num_saved + leftover);
        output.clear();
        output.reserve(cols - num_saved);
        assert!(rows <= 4_294_967_295); // 2^32 -1
        let distribution = Uniform::<u32>::from(0..rows.try_into().unwrap());
        for (i, b) in vs.into_iter().enumerate() {
            let indices = lpn_mtx_indices::<FE>(&distribution, &mut self.lpn_rng);
            let mut y = b;

            y += indices.iter().map(|(j, a)| *a * self.base_voles[*j]).sum();

            if i < num_saved {
                base_voles.push(y);
            } else {
                output.push(y);
            }
        }
        base_voles.extend(self.base_voles[used..].iter());
        self.base_voles = base_voles;
        debug_assert_eq!(output.len(), cols - num_saved);
        Ok(())
    }
}

impl<FE: FiniteField> SVoleReceiver for Receiver<FE> {
    type Msg = FE;

    fn init<C: AbstractChannel, RNG: CryptoRng + Rng>(
        channel: &mut C,
        rng: &mut RNG,
        lpn_setup: LpnParams,
        lpn_extend: LpnParams,
    ) -> Result<Self, Error> {
        let pows: Powers<FE> = Default::default();
        let mut base_receiver = BaseReceiver::<FE>::init(channel, pows.clone(), rng)?;
        let base_voles_setup =
            base_receiver.receive(channel, compute_num_saved::<FE>(lpn_setup), rng)?;
        let delta = base_receiver.delta();
        let spsvole = SpsReceiver::<FE>::init(channel, pows, delta, rng)?;
        let seed = rng.gen::<Block>();
        let seed = scuttlebutt::cointoss::send(channel, &[seed])?[0];
        let lpn_rng = AesRng::from_seed(seed);
        let mut receiver = Self {
            lpn_setup,
            lpn_extend,
            spsvole,
            delta,
            base_voles: base_voles_setup,
            lpn_rng,
        };
        let mut base_voles_setup = Vec::new();
        receiver.receive_internal(channel, lpn_setup, 0, rng, &mut base_voles_setup)?;
        receiver.base_voles = base_voles_setup;
        // let mut base_voles_extend = Vec::new();
        // receiver.receive_internal(channel, LPN_SETUP_PARAMS, 0, rng, &mut base_voles_extend)?;
        // receiver.base_voles = base_voles_extend;
        Ok(receiver)
    }

    fn delta(&self) -> FE {
        self.delta
    }

    fn receive<C: AbstractChannel, RNG: CryptoRng + Rng>(
        &mut self,
        channel: &mut C,
        rng: &mut RNG,
        output: &mut Vec<FE>,
    ) -> Result<(), Error> {
        self.receive_internal(
            channel,
            self.lpn_extend,
            compute_num_saved::<FE>(self.lpn_extend),
            rng,
            output,
        )
    }

    fn duplicate<C: AbstractChannel, RNG: CryptoRng + Rng>(
        &mut self,
        channel: &mut C,
        rng: &mut RNG,
    ) -> Result<Self, Error> {
        let mut base_voles = Vec::new();
        self.receive_internal(
            channel,
            self.lpn_setup,
            compute_num_saved::<FE>(self.lpn_setup),
            rng,
            &mut base_voles,
        )?;
        // let mut extras = Vec::new();
        // self.receive_internal(
        //     channel,
        //     LPN_SETUP_PARAMS,
        //     compute_num_saved::<FE>(LPN_SETUP_PARAMS),
        //     rng,
        //     &mut extras,
        // )?;
        // base_voles.extend(extras.into_iter());

        debug_assert!(base_voles.len() >= compute_num_saved::<FE>(self.lpn_extend));
        debug_assert!(self.base_voles.len() >= compute_num_saved::<FE>(self.lpn_extend));

        let spsvole = self.spsvole.duplicate(channel, rng)?;
        let lpn_rng = self.lpn_rng.fork();
        Ok(Self {
            lpn_setup: self.lpn_setup,
            lpn_extend: self.lpn_extend,
            spsvole,
            delta: self.delta,
            base_voles,
            lpn_rng,
        })
    }
}

impl<FF: FiniteField> SemiHonest for Sender<FF> {}
impl<FF: FiniteField> SemiHonest for Receiver<FF> {}
impl<FF: FiniteField> Malicious for Sender<FF> {}
impl<FF: FiniteField> Malicious for Receiver<FF> {}

#[cfg(test)]
mod tests {
    use super::{Receiver, SVoleReceiver, SVoleSender, Sender, LPN_EXTEND_SMALL, LPN_SETUP_SMALL};
    use scuttlebutt::{
        field::{F128b, F40b, F61p, FiniteField as FF},
        AesRng, Channel,
    };
    use std::{
        io::{BufReader, BufWriter},
        os::unix::net::UnixStream,
    };

    fn test_lpn_svole_<FE: FF, Sender: SVoleSender<Msg = FE>, Receiver: SVoleReceiver<Msg = FE>>() {
        let (sender, receiver) = UnixStream::pair().unwrap();
        let handle = std::thread::spawn(move || {
            let mut rng = AesRng::new();
            let reader = BufReader::new(sender.try_clone().unwrap());
            let writer = BufWriter::new(sender);
            let mut channel = Channel::new(reader, writer);
            let mut vole =
                Sender::init(&mut channel, &mut rng, LPN_SETUP_SMALL, LPN_EXTEND_SMALL).unwrap();
            let mut out = Vec::new();
            vole.send(&mut channel, &mut rng, &mut out).unwrap();
            out
        });
        let mut rng = AesRng::new();
        let reader = BufReader::new(receiver.try_clone().unwrap());
        let writer = BufWriter::new(receiver);
        let mut channel = Channel::new(reader, writer);
        let mut vole =
            Receiver::init(&mut channel, &mut rng, LPN_SETUP_SMALL, LPN_EXTEND_SMALL).unwrap();
        let mut vs = Vec::new();
        vole.receive(&mut channel, &mut rng, &mut vs).unwrap();
        let uws = handle.join().unwrap();
        for i in 0..uws.len() as usize {
            let right = uws[i].0 * vole.delta() + vs[i];
            assert_eq!(uws[i].1, right);
        }
    }

    fn test_duplicate_svole_<
        FE: FF,
        Sender: SVoleSender<Msg = FE>,
        Receiver: SVoleReceiver<Msg = FE>,
    >() {
        let (sender, receiver) = UnixStream::pair().unwrap();
        let handle = std::thread::spawn(move || {
            let mut rng = AesRng::new();
            let reader = BufReader::new(sender.try_clone().unwrap());
            let writer = BufWriter::new(sender);
            let mut channel = Channel::new(reader, writer);
            let mut vole =
                Sender::init(&mut channel, &mut rng, LPN_SETUP_SMALL, LPN_EXTEND_SMALL).unwrap();
            let mut uws = Vec::new();
            vole.send(&mut channel, &mut rng, &mut uws).unwrap();
            let mut vole2 = vole.duplicate(&mut channel, &mut rng).unwrap();
            let mut uws2 = Vec::new();
            vole2.send(&mut channel, &mut rng, &mut uws2).unwrap();
            let mut uws3 = Vec::new();
            vole.send(&mut channel, &mut rng, &mut uws3).unwrap();
            assert_ne!(uws2, uws3);
            uws.extend(uws2);
            uws.extend(uws3);
            uws
        });
        let mut rng = AesRng::new();
        let reader = BufReader::new(receiver.try_clone().unwrap());
        let writer = BufWriter::new(receiver);
        let mut channel = Channel::new(reader, writer);
        let mut vole =
            Receiver::init(&mut channel, &mut rng, LPN_SETUP_SMALL, LPN_EXTEND_SMALL).unwrap();
        let mut vs = Vec::new();
        vole.receive(&mut channel, &mut rng, &mut vs).unwrap();
        let mut vole2 = vole.duplicate(&mut channel, &mut rng).unwrap();
        let mut vs2 = Vec::new();
        vole2.receive(&mut channel, &mut rng, &mut vs2).unwrap();
        let mut vs3 = Vec::new();
        vole.receive(&mut channel, &mut rng, &mut vs3).unwrap();
        assert_ne!(vs2, vs3);
        vs.extend(vs2);
        vs.extend(vs3);

        let uws = handle.join().unwrap();
        for i in 0..uws.len() as usize {
            let right = uws[i].0 * vole.delta() + vs[i];
            assert_eq!(uws[i].1, right);
        }
    }

    #[test]
    fn test_lpn_svole_gf128() {
        test_lpn_svole_::<F128b, Sender<F128b>, Receiver<F128b>>();
    }

    #[test]
    fn test_lpn_svole_f61p() {
        test_lpn_svole_::<F61p, Sender<F61p>, Receiver<F61p>>();
    }

    #[test]
    fn test_lpn_svole_f40b() {
        test_lpn_svole_::<F40b, Sender<F40b>, Receiver<F40b>>();
    }

    #[test]
    fn test_duplicate_svole() {
        test_duplicate_svole_::<F61p, Sender<F61p>, Receiver<F61p>>();
    }

    #[test]
    fn test_duplicate_svole_f40b() {
        test_duplicate_svole_::<F40b, Sender<F40b>, Receiver<F40b>>();
    }
}